Fusion of Multiple Tracking Algorithms for Robust People Tracking

نویسندگان

  • Nils T. Siebel
  • Stephen J. Maybank
چکیده

This paper shows how the output of a number of detection and tracking algorithms can be fused to achieve robust tracking of people in an indoor environment. The new tracking system contains three co-operating parts: i) an Active Shape Tracker using a PCA-generated model of pedestrian outline shapes, ii) a Region Tracker, featuring region splitting and merging for multiple hypothesis matching, and iii) a Head Detector to aid in the initialisation of tracks. Data from the three parts are fused together to select the best tracking hypotheses. The new method is validated using sequences from surveillance cameras in a underground station. It is demonstrated that robust realtime tracking of people can be achieved with the new tracking system using standard PC hardware.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of LOS Rates for Target Tracking Problems using EKF and UKF Algorithms- a Comparative Study

One of the most important problem in target tracking is Line Of Sight (LOS) rate estimation for using from PN (proportional navigation) guidance law. This paper deals on estimation of position and LOS rates of target with respect to the pursuer from available noisy RF seeker and tracker measurements. Due to many important for exact estimation on tracking problems must target position and Line O...

متن کامل

Online multiple people tracking-by-detection in crowded scenes

Multiple people detection and tracking is a challenging task in real-world crowded scenes. In this paper, we have presented an online multiple people tracking-by-detection approach with a single camera. We have detected objects with deformable part models and a visual background extractor. In the tracking phase we have used a combination of support vector machine (SVM) person-specific classifie...

متن کامل

Multiple Target Tracking in Wireless Sensor Networks Based on Sensor Grouping and Hybrid Iterative-Heuristic Optimization

A novel hybrid method for tracking multiple indistinguishable maneuvering targets using a wireless sensor network is introduced in this paper. The problem of tracking the location of targets is formulated as a Maximum Likelihood Estimation. We propose a hybrid optimization method, which consists of an iterative and a heuristic search method, for finding the location of targets simultaneously. T...

متن کامل

Robust Sliding Mode Controller for Trajectory Tracking and Attitude Control of a Nonholonomic Spherical Mobile Robot

Based on dynamic modeling, robust trajectory tracking control of attitude and position of a spherical mobile robot is proposed. In this paper, the spherical robot is composed of a spherical shell and three independent rotors which act as the inner driver mechanism. Owing to rolling without slipping assumption, the robot is subjected to two nonholonomic constraints. The state space representatio...

متن کامل

A Gravitational Search Algorithm-Based Single-Center of Mass Flocking Control for Tracking Single and Multiple Dynamic Targets for Parabolic Trajectories in Mobile Sensor Networks

Developing optimal flocking control procedure is an essential problem in mobile sensor networks (MSNs). Furthermore, finding the parameters such that the sensors can reach to the target in an appropriate time is an important issue. This paper offers an optimization approach based on metaheuristic methods for flocking control in MSNs to follow a target. We develop a non-differentiable optimizati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002